Symmetric Encryption: CPA, Padding Oracle Attacks, and CCA

Yan Huang

Credits: Vitaly Shmatikov (Cornell Tech)

Quiz: Write down the Shanon's definition of perfect security.

Shannon's perfect secrecy

Let (E, D) be a cipher over $(\mathcal{R}, \mathcal{M}, \mathcal{C})$

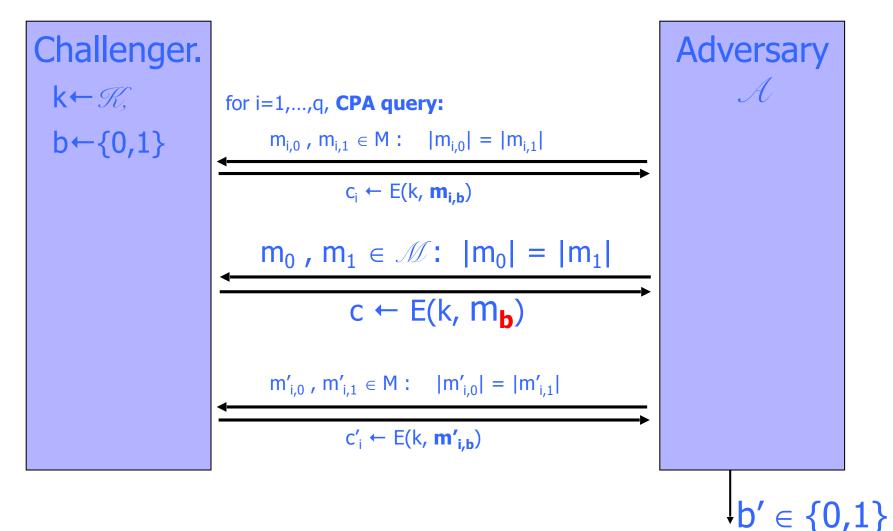
(E,D) has perfect secrecy if $\forall m_0, m_1 \in \mathcal{M}, |m_0| = |m_1|$ { E(k,m_0) } = { E(k,m_1) } where k← \mathcal{K} .

Does this help to define CPA-Security?

The Chosen-Plaintext Game

- 1. $k \leftarrow \text{KeyGen}(1^n)$. $b \leftarrow \{0,1\}$. Give $\text{Enc}(k, \cdot)$ to \mathcal{A} .
- 2. \mathcal{A} chooses as many plaintexts as he wants, and receives the corresponding ciphertexts via Enc(k, \cdot).
- 3. \mathcal{A} picks two plaintexts M_0 and M_1 (Picking plaintexts for which A previously learned ciphertexts is allowed!)
- 4. \mathcal{A} receives the ciphertext of M_b, and continues to have accesses to Enc(k, \cdot).
- 5. \mathcal{A} outputs b'.
- \mathcal{A} wins if b'=b.

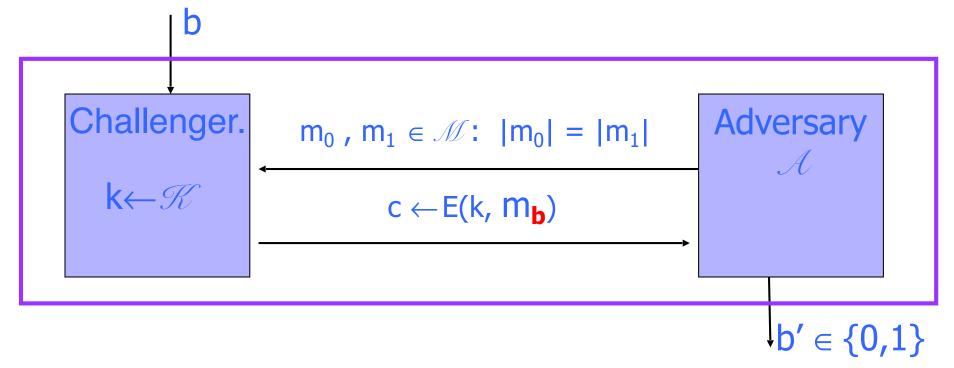
CPA Secure (one-time key)



For all efficient adversary \mathcal{A} , | Pr[b=b'] - 1/2 | is "negligible".

Alternative Definition of CPA-Security (one-time key)

For $b \leftarrow \{0,1\}$, define experiment EXP(b) as:



Define $W_b := [$ event that EXP(b)=1].

Adv $(\mathcal{M}, \mathbf{E}) := | \Pr[W_0] - \Pr[W_1] | \in [0, 1]$

Alternative Definition of CPA-Security (one-time key)

E is **computational secure** if for all efficient adversary $\mathcal A$

Adv (A, E) is "negligible".

Negligible

- Concrete sense:
 e.g., < 2⁻⁴⁰
- Asymptotic sense:
 negl(n) < any inverse polynomial of n, as long as n is sufficiently large.

Defining Perfect Security (one-time key)

E is **perfectly secure** if for all adversary \mathcal{A} Adv (\mathcal{A} , E) is 0.

\Leftrightarrow For all explicit $m_0, m_1 \in M$:

 $\{ E(k,m_0) \} = \{ E(k,m_1) \}, \text{ where } k \leftarrow \mathscr{K}.$

A Simple Example

- Any deterministic, stateless symmetric encryption scheme is insecure
 - Attacker can easily distinguish encryptions of different plaintexts from encryptions of identical plaintexts
 - This includes ECB mode of common block ciphers! <u>Attacker A interacts with Enc(-)</u>

query Enc(0)

Let x=0, y=1 be any two different plaintexts Send x, y to the challenger If C_1 =Enc(0) then b=0 else b=1

The advantage of this attacker A is 1

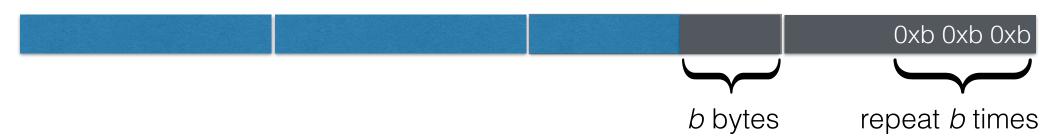
Message Padding

- What if the original message can't be divided into a whole-number of blocks?
 - Block size: *L* bytes
 - Append *b* bytes to the message to make whole blocks.

Message Padding

- What if the original message is already exactly an whole-number of blocks?
 - Block size: *L* bytes
 - Still append *L* bytes to the message

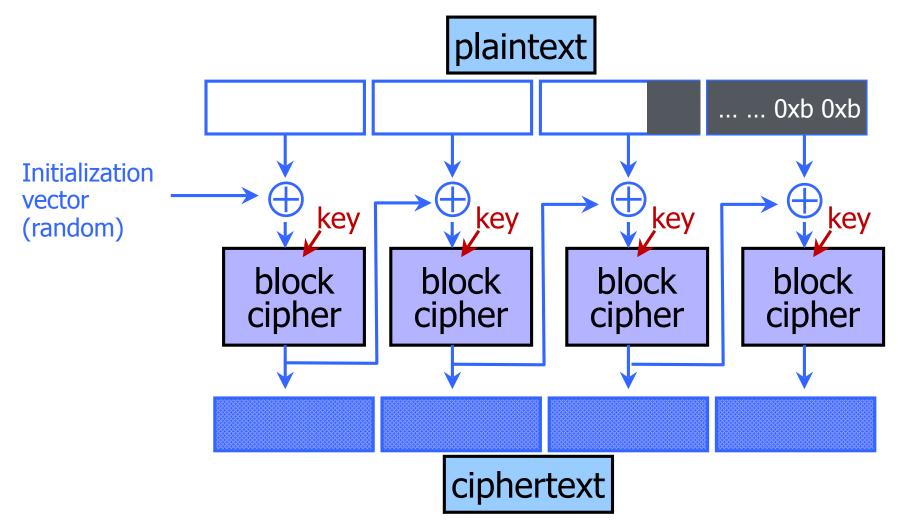
How to Un-pad?



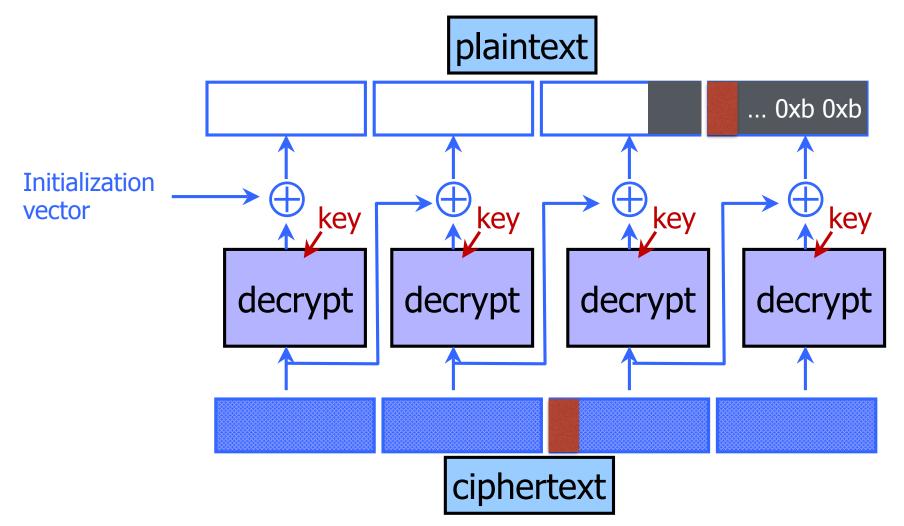
1. Read the last byte of the padded message to learn *b*

What if this check fails?

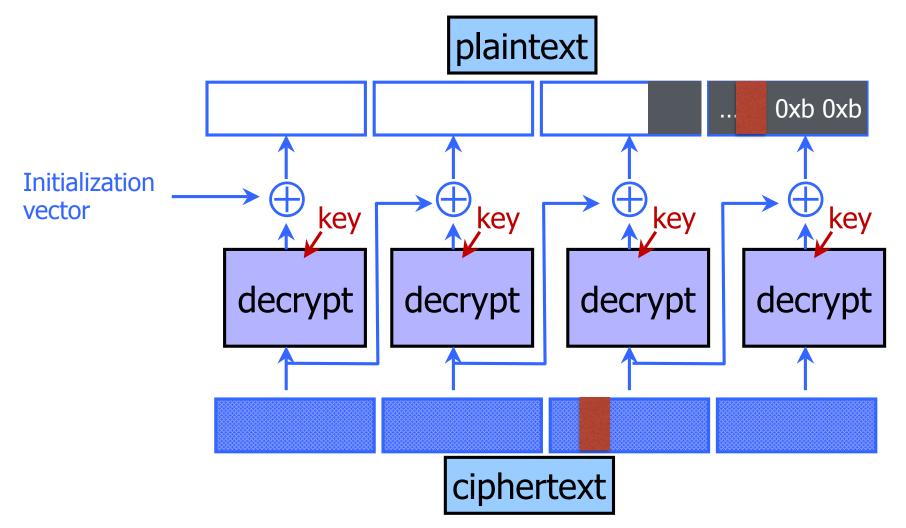
- 2. Verify that 0xb repeats b times in the last block
- **3.** Remove the last block plus *b* types in the second to the last block



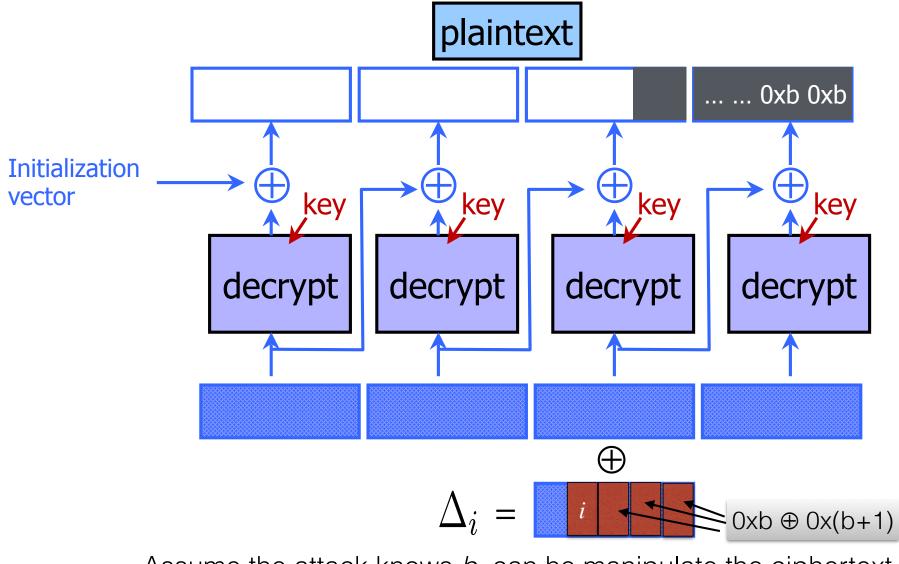
Can the attacker learn the length of the padding?



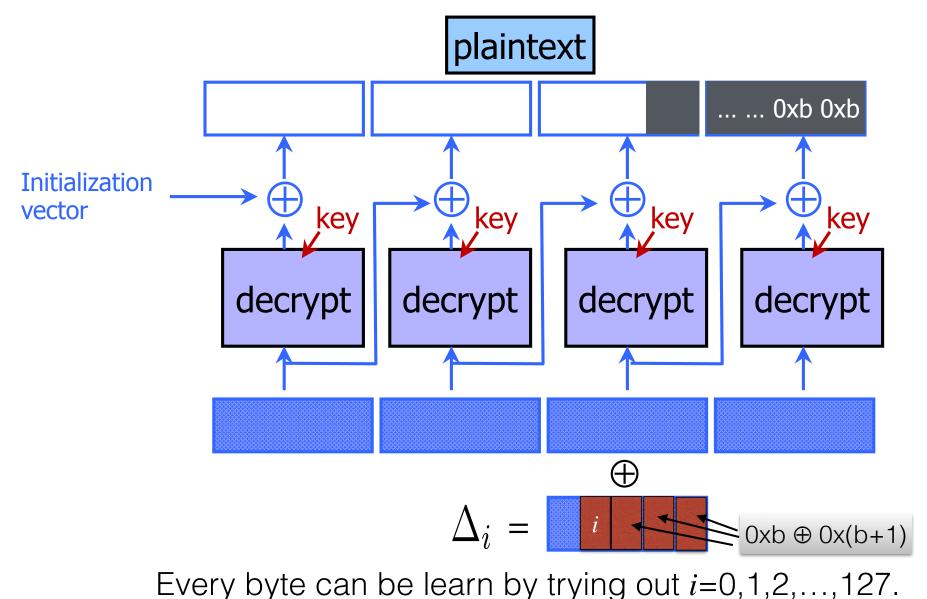
What happens if flip a bit in the left-most byte of the second to the last ciphertext block?



Shift left the tampered byte until you find *b*



Assume the attack knows b, can he manipulate the ciphertext to set the padding bytes to " $0x(b+1) 0x(b+1) \dots 0x(b+1)$ "?

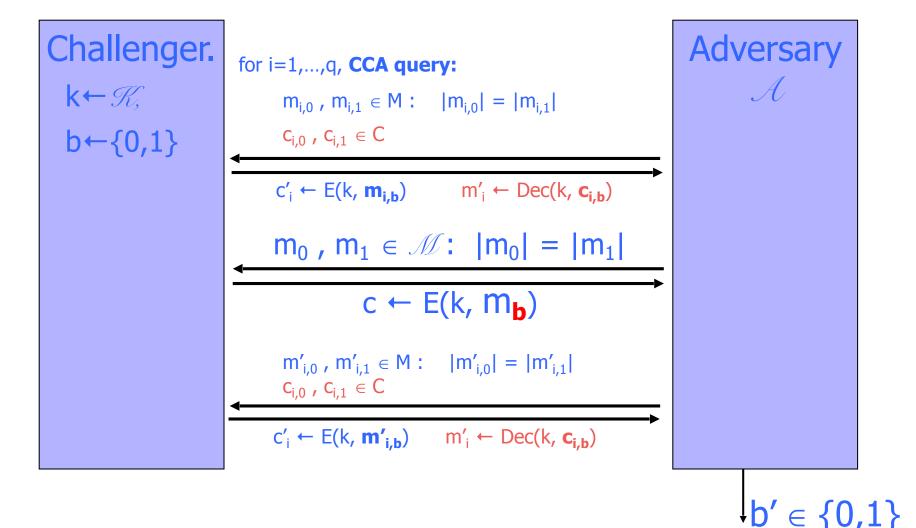


The Lesson

Innocent looking user-friendly feedback messages could be exploited and extremely insecure!

We need some notion of security stronger than CPA.

CCA Security (one-time key)



For all efficient adversary \mathcal{A} , | Pr[b=b'] - 1/2 | is "negligible".

The Chosen-Ciphertext Game

- 1. $k \leftarrow \text{KeyGen}(1^n)$. $b \leftarrow \{0,1\}$. Give $\text{Enc}(k, \cdot)$ to \mathcal{A} .
- 2. \mathcal{A} is given oracle access to Enc(k, \cdot) and Dec(k, \cdot).
- 3. \mathcal{N} picks two plaintexts M_0 and M_1 (Picking plaintexts for which A previously learned ciphertexts is allowed!)
- A receives the ciphertext of M_b, and continues to have accesses to Enc(k, ⋅) and Dec(k, ⋅).
- 5. \mathcal{A} outputs b'.
- \mathcal{A} wins if b'=b.